Paving the way to safer pregnancies

THE drive to create safer, more successful pregnancies is one of the top goals of modern science. While pregnancy is better understood today than ever before, with improvements in technology helping to lower the risk of negative outcomes, researchers still don’t know much about a vital part of the pregnancy process: uterine fluid.
Secreted by glands in the womb during pregnancy, uterine fluid is believed to play an important role in supporting a developing embryo by sending information from the uterus to the embryo, along with a host of other speculated functions.
But studying this fluid in women presents many dilemmas, given that studies might require invasive monitoring or experimentation during an actual pregnancy.
However, in a new study published in the Proceedings of the National Academy of Sciences, researchers have found a way to study uterine fluid and avoid any invasive procedures during pregnancy, while at the same time developing a potential model for using precision medicine to improve pregnancy outcomes.
“Using what are called stem cell-derived organoids, we were able to isolate a sample of uterine fluid in the lab,” says Constantine Simintiras, a postdoctoral research fellow at the University of Missouri.
“For such an understudied element of human pregnancy, being able to grow and study this fluid in the lab makes it much easier to advance our understanding of this important function of the womb.”
Simintiras and his colleagues used ‘organoids’—simplified versions of the tissue that forms the lining of the uterus, grown from stem cells—as the source for a fluid that closely resembles uterine fluid. Inside the body, uterine glands secrete this fluid to support sperm migration and the early development of embryos.
This scientific breakthrough paves the way for a precision medicine approach to maintaining a healthy pregnancy. The hope is that by obtaining stem cells from expectant mothers, even before they conceive, researchers could study the composition of their uterine fluid to determine if there are any potential problems.
“We know the composition of uterine fluid is extremely important, so we need to understand how that composition is regulated,” Simintiras says. “In women it is likely influenced by hormones, but are there other factors at play? This model for lab study gives us a means to tackle such questions, and in the future, this could help us detect and correct problems with uterine fluid before they lead to complications.”

Previous Pack your bags: Malta will pay you to visit
Next Forgetting to Remember: The Civil War Executions of John Murphy and John Phelan